Carnosine was tot nu toe voornamelijk bekend bij bodybuilders en atleten, vanwege de werking op vermoeide spieren. De laatste tijd komt het echter meer en meer in beeld, ondersteund door ruim 800 studies, als één van de belangrijkste supplementen tegen verouderingsprocessen. Carnosine gaat op meerdere fronten tegelijk de leeftijdsgebonden beschadiging en afbraak van lichaamseiwitten tegen. Een aantal fundamentele biochemische processen zoals glycosylering, carbonylering, crosslinking en beschadiging door vrije radicalen, kunnen de lichaamseiwitten beschadigen, wat functieverlies en op den duur degeneratie van weefsels en organen tot gevolg heeft. Naarmate men ouder wordt, wordt dit een steeds grotere bedreiging voor de gezondheid.
Carnosine is daarnaast een sterke beschermer van zenuwweefsel en het helpt bij het uitscheiden van toxische zware metalen. Als wateroplosbaar antioxidant heeft het de unieke eigenschap dat het in de celmembranen peroxidatie van de membraanlipiden tegengaat. Carnosine functioneert daarbij waarschijnlijk als wateroplosbare "partner" van vitamine E bij de bescherming van celmembranen.
Carnosine is het eerste peptide dat uit natuurlijk materiaal werd geïsoleerd. Al een eeuw geleden meldden de Russische onderzoekers Gulewitsch en Amiradzibi als eersten de succesvolle isolatie van een kristallijne stof uit Liebigís vleesextract, dat ze carnosine noemden. Vervolgens werd deze substantie geïdentificeerd als bèta-alanyl-L-histidine. Twee andere Russische onderzoekers hebben daarna een enorme bijdrage geleverd aan het onderzoek naar de biologische effecten en medische toepassingen van carnosine. Ondanks deze oude geschiedenis van carnosine, zijn de anti-verouderingseigenschappen pas in het laatste decennium, en met name pas in de laatste jaren bekend geworden. Een recent literatuuronderzoek leverde 780 gepubliceerde studies op, voornamelijk door Russische en Japanse onderzoekers, hoewel de laatste jaren ook Britse en Australische onderzoekers carnosine hebben ontdekt.
Carnosine is een dipeptide dat door het lichaam gevormd kan worden uit de aminozuren bèta-alanine en histidine met behulp van het enzym carnosinesynthetase. Het komt vooral voor in langlevende weefsels als zenuwweefsel en spierweefsel, evenals in andere geïnnerveerde weefsels. Het kan weer worden afgebroken door de carnisinase-enzymen, die speciaal bedoeld zijn om carnosine in de weefsels of in het bloed te inactiveren. Bronnen van carnosine in de voeding zijn vlees, gevogelte en vis. De absorptie van carnosine uit voedsel is ongeveer 30-70%, afhankelijk van de hoeveelheid verschillende aminozuren in het voedsel. Gezuiverd carnosine (in supplementen) wordt voor meer dan 70% geabsorbeerd, voornamelijk in de dunne darm (jejunum). Vanuit het bloed gaat het naar de weefsels, met name spier- en hersenweefsel. Het plasma bevat geen meetbare hoeveelheden carnosine. In het hersen- en spierweefsel kan het enzym carnosinesynthetase carnosine vormen uit de aminozuren alanine en histidine. Een andere groep van enzymen, dipeptidases of carnosinases, inactiveren juist weer carnosine in het bloed en in andere weefsels.
In de loop der jaren zijn er verschillende dipeptiden gevonden die structureel verwant zijn aan carnosine (de aminoacyl aminozuren). Deze worden allen gesynthetiseerd door carnosinesynthetase. Wanneer carnosine gemethyleerd wordt, ontstaat anserine (bèta-alanyl-N1-methylhistidine). Creatine en anserine zijn de belangrijkste niet-eiwit stikstofverbindingen in spierweefsel. Deze stoffen kunnen 0,2 tot 0,5% van de netto spiermassa uitmaken. In het centrale zenuwstelsel komen vooral homocarnosine (combinatie van GABA en carnosine) en andere gamma-aminobutyryl (GABA) houdende dipeptiden voor. Deze hebben daar allen een functie als bestrijder van vrije radicalen, maar carnosine heeft een additioneel effect omdat het ook tegen glycosylering en andere manieren van eiwitafbraak werkt.
De tot op heden ontdekte belangrijkste lichaamsfuncties van carnosine staan hieronder genoemd:
- Anti-veroudering: veel onderzoek in het afgelopen decennium concentreert zich op beschadiging van lichaamseiwitten als belangrijke oorzaak voor verouderingsprocessen. Door diverse oorzaken, waaronder oxidatie, carbonylering, glycosylering, lipide-peroxidatie, crosslinking en de productie van AGE’s (toelichting verderop) kunnen lichaamseiwitten veranderen en beschadigd raken, wat functieverlies tot gevolg heeft. Wanneer op den duur een significant deel van het lichaamseiwit in een dergelijke toestand is geraakt, wordt het lichaam gevoeliger voor degeneratieve ziekten.
Een groot aantal wetenschappelijke studies, gepubliceerd in met name Russische en Japanse wetenschappelijke tijdschriften, maar ook in het Westen, wijst uit dat carnosine effectief is tegen al deze vormen van eiwitdenaturatie.
- Anti-carbonylering: carnosine lijkt de meest effectieve verbinding te zijn tegen carbonylering die tot nu toe is ontdekt. Carbonylering is een pathologische stap in de veroudering van eiwitten. Bij carbonylering hechten carbonylgroepen zich aan eiwitmoleculen (en fosfolipiden). Het resultaat is dat de eiwitten worden afgebroken (proteolyse) en dit kan uiteindelijk leiden tot het afsterven van de cel. Carnosine reageert met de carbonylgroep en vormt een inerte proteïne-carbonyl-carnosine-verbinding, waardoor de proteïnen worden beschermd en denaturatie wordt tegengegaan.
Proteïnen zijn niet de enige moleculen die gedenatureerd worden door carbonylering, ook fosfolipiden kunnen het slachtoffer zijn. Carbonylering van fosfolipiden veroorzaakt vooral schade in het centrale en perifere zenuwstelsel, wat resulteert in geheugenverlies en vermindering van cognitieve vermogens. Omdat carnosine carbonylering van fosfolipiden tegengaat, is het niet vreemd dat het geweldige neuroprotectieve eigenschappen heeft.
- Anti-glycosylering: misschien wel de belangrijkste werking van carnosine is de anti-glycosylering-werking. Eén van de sleutelprocessen van veroudering is het proces van de glycosylering (ook wel glycatie genoemd). De enorme impact van dit proces op de gezondheid begint steeds meer door te dringen in de wetenschappelijke wereld. Met name bij hoge glucosespiegels in het bloed reageert het glucose (suikeraldehyden) met bepaalde aminozuren op waardevolle lichaamseiwitten, waardoor niet-functionerende eiwitstructuren ontstaan. De aldus aangedane eiwitten oxideren in enkele stappen verder tot uiteindelijk Advanced Glycation Endproducts (AGE’s).
Deze AGE’s kunnen een vijftigvoudige stijging in de vorming van vrije radicalen geven. Eenmaal gevormde AGE’s reageren met naburige eiwitten en veroorzaken zo pathologische crosslinking, wat een fundamenteel proces is in het verouderingsproces. Crosslinking zorgt voor verlies van functionaliteit en verharding van weefsels. Schade door ophoping van AGE’s draagt op zijn minst deels bij aan verschillende ouderdomsziekten, zoals verharding van de arteriën, diabetes, atherosclerose, cataract, beroerte, de ziekte van Alzheimer en veroudering van de huid.
Met name diabetici vormen relatief vroeg in hun leven al grote hoeveelheden AGE’s.
Carnosine blokkeert deze schadelijke reactie. Carnosine heeft structurele verwantschap met de plaatsen die de reactieve aldehydeverbindingen (aldehyde- en ketosesuikers) aanvallen en het lijkt er dan ook op dat carnosine zichzelf "opoffert" om het doelwit te sparen. Carnosine bindt zich tevens aan reeds gevormde AGE’s, het inactiveert ze en verwijdert ze (carnosylering/carnosylatie). Carnosine stimuleert tevens andere eliminatieroutes voor AGE’s. Zo kunnen AGE’s geïnactiveerd worden door macrofagen, die daarvoor speciale receptoren bezitten (RAGE’s). Carnosine faciliteert deze eliminatieroute door de macrofagen te helpen AGE-moleculen beter te herkennen.
- Antioxidant en membraanbeschermer: carnosine vangt effectief de meest destructieve vrije radicalen weg, namelijk het hydroxylradicaal, evenals superoxide, singletzuurstof en het peroxylradicaal. Het wordt beschouwd als het wateroplosbare equivalent van vitamine E bij de bescherming van celmembranen tegen oxidatieve schade. Specifieker, als een wateroplosbare vrije radicaalvanger voorkomt het lipideperoxidatie in de celmembraan. De hydrofiele aard van carnosine geeft bescherming in het cytosol, waar vele lipide-peroxidatieproducten gevonden worden.
In tegenstelling tot veel andere antioxidanten gaat carnosine niet alleen de vorming van vrije radicalen tegen, maar is het ook nog effectief tegen de schadelijke verbindingen die als gevolg van vrije radicaalschade kunnen ontstaan. Bijvoorbeeld, het hoogreactieve vrije radicaal malondialdehyde (MDA), eindproduct van de lipidenperoxidatie, wordt gedeactiveerd door carnosine door ermee te reageren. Daarbij "offert" carnosine zichzelf op. Malondialdehyde kan schade toebrengen aan lipiden, enzymen en DNA en speelt een rol bij atherosclerose, cataractvorming en veroudering in zijn algemeenheid. Malondialdehyde, eindproduct van de lipidenperoxidatie, vormt "adducten" met eiwitten en draagt zo bij aan de veroudering van eiwitten. Een andere reden waarom carnosine superieur is aan andere antioxidanten, is omdat het niet alleen beschermt tegen oxidatieve beschadiging, maar ook beschadiging door andere degeneratieve processen tegengaat zoals glycosylering en carbolysering.
- Bescherming proteasomen: Carnosine helpt de recycling van beschadigde eiwitten door de zogenaamde proteasomen te beschermen. Proteasomen zijn eiwitten die beschadigde en gedenatureerde eiwitten uit de cel kunnen verwijderen. Ze spelen een centrale rol in misschien wel alle celregulatieprocessen, zoals de celdelingscyclus, celdifferentiatie en apoptose (geprogrammeerde celdood). Door verschillende oorzaken kunnen de proteasomen geremd raken. Wanneer dat gebeurt kunnen misvormde, geoxideerde en anderszins beschadigde eiwitten zich ophopen in de cel en een aanleiding zijn voor celdood en neurodegeneratie.
- Crosslinking: als een sterk antioxidant voorkomt carnosine crosslinking van eiwitten, met als voorbeeld crosslinking van collageen in de huid.
- Senescentie: Carnosine heeft de opmerkelijke eigenschap om cellen te verjongen die tegen de zogenaamde "senescentie" (einde van de levenscyclus van delende cellen) aanzitten, waardoor het normale uiterlijk terugkeert en het leven van de cel wordt verlengd. Toevoeging van carnosine aan het groeimedium kon in onderzoek de overleving van cellen op een dosisafhankelijke manier verlengen.
- Neuroprotectieve werking: carnosine beschermt het hersenweefsel tegen crosslinking, glycosylering, overprikkeling en oxidatie. Carnosine gaat bijvoorbeeld de crosslinking van bèta-amyloïde tegen en vertraagt zo de ontwikkeling van Alzheimer-plaques. Het kan verder de microvasculatuur van de hersenen beschermen tegen de plaquevorming die kan leiden tot seniliteit of de ziekte van Alzheimer. Carnosine is verder een regulator van zink en koperconcentraties in zenuwcellen. Koper en zink zijn verbindingen die tijdens normale synaptische activiteit worden vrijgemaakt. In een licht verzuurde omgeving echter, die karakteristiek is voor bijvoorbeeld de ziekte van Alzheimer, worden ze gereduceerd tot hun ionische vormen en worden toxisch voor het zenuwstelsel. Onderzoek heeft uitgewezen dat carnosine koper en zinktoxiciteit kan bufferen in de hersenen, waardoor overstimulatie van zenuwen (en onderdrukking van GABA-gemedieerde remmende activiteit) door deze neuroactieve stoffen wordt voorkomen. Het diepe frontale gedeelte van de hersenen (entorhinale cortex) is waarschijnlijk een plek waar relatief hoge concentraties carnosine voorkomen. Het heeft daar onder meer een effect op GABA, dat zich bindt aan carnosine en zo wordt omgezet in homocarnosine.
Carnosine speelt waarschijnlijk een belangrijke rol in de reukzenuw, mogelijk als neurotransmitter.
Er is enige ophef geweest vanwege de mogelijkheid van carnosine om lipofuscine te vormen. Lipofuscine is het leeftijdspigment dat regelmatig voorkomt in verouderend hersenweefsel. Lipofuscine is meer een teken dat andere schadelijke reacties al hebben plaatsgevonden. Vrije radicalen en toxische aldehyden kunnen reageren met waardevolle lichaamseiwitten, waarbij lipofuscine een bijproduct is. Carnosine bindt zich actief aan deze reactieve verbindingen, voordat ze schade kunnen aanrichten. Het eindproduct van deze reactie kan (verder inactief) lipofuscine zijn.
- Verbetering spierfunctie: carnosine komt in grote hoeveelheden in spierweefsel voor en zorgt aldaar voor een effectievere contractie van spierweefsel. Het maakt de cellen gevoeliger voor calcium, dat de spiercontractie initieert. Daarnaast is het betrokken bij de detoxificatie van reactieve aldehyden uit de lipidenperoxidatie, die onder andere bij sportinspanningen in de skeletspieren worden gegenereerd. Carnosine wordt ook actief gesynthetiseerd door spiercellen. In verouderend (spier)weefsel of bij neuromusculaire aandoeningen kunnen verlaagde carnosineconcentraties een functionele verslechtering en structurele veranderingen induceren door een vermindering van de antioxidatieve werking. Deze verslechtering kan andere pathologische of atrofische mechanismen versterken.
- Binding zware metalen: Carnosine is een zware metalenbinder. Het kan toxische zware metalen cheleren en hen aldus uit het lichaam verwijderen. Zo kan het onder meer organisch kwik detoxificeren. Ook andere metalen, zoals mineralen, kunnen gecheleerd worden. Daarbij hangt de mate van chelatie af van het type metaalion. Wanneer carnosine met koper bindt, vermindert dat de reactiviteit van koper.
- Maagzweren: Russisch onderzoek wijst op een preventief en therapeutisch effect van carnosine tegen maagzweren, zonder dat de zuursecretie wordt beïnvloed. Het bestrijdt de Helicobacter pylori bacterie, die de oorzaak blijkt te zijn van veel maagzweren. Carnosine stimuleert de vorming van granuleringsweefsel. Een combinatie van carnosine en zink is op de markt als regulier medicijn voor de bestrijding van maag- en darmzweren (Polaprezinc).